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Abstract

This study discusses the development of a technique for analysis of the dynamical regimes of complex mechanical

systems consisting of a rotor motor coupled to a system with multi-degrees-of-freedom. To understand the possible

qualitatively different dynamical regimes in such systems, a simple mechanical system is considered of the ‘‘rotator-

oscillator’’ type with a finite power source. This system has four degrees-of-freedom and is defined in four-dimensional

cylindrical phase space with 12 parameters. Near the main resonance the original system is reduced to the Lorenz system

with four parameters defined in a three-dimensional Cartesian phase space. This is done with the help of a special change of

variables, parameters, and employing an averaging method. Studying the latter system, the existence of one of the chaotic

attractors, namely of Lorenz attractor is established. Also established is the Feigenbaum attractor and the alternation.

Chaotic limit sets define chaotic behavior of the instantaneous frequency of rotation of the asynchronous motor. The

Poincare mappings are presented to show the correspondence of the original 4 dof and averaged 3 dof systems. The

qualitative rotational characteristics for different values of the system parameters are obtained. In particular, the system

can possess normal Sommerfeld effect, doubled Sommerfeld effect and a so-called scattering of the torque curve. The

scattering of the torque curve (which is a known effect in micro-electronics) is likely to be a new effect in mechanics. In

contrast to the Sommerfeld effect, when frequency or amplitude jumps occur instantaneously (once the unstable point of

the characteristic is reached), the jump to a next stable point may take a certain time, even infinite one. Such chaotic

mistuning of the motor frequency would result in random vibrations leading to system wear and damage.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The studies of dynamics of vibrational mechanisms with the limited power supplies originate in the pioneer
papers by Sommerfeld [1] and Timoshenko [2] and continued by Kalischuk [3], Martyshkin [4], Blekhman [5],
Kononenko [6,7], etc. Later, studies of different aspects of dynamics of such applied systems have resulted
in a huge number of papers. A full review of the publications related to this topic is not presented here
but the reader is referred to the classical books by Blekhman [8,9], Alifov and Frolov [10] and Dimentberg [11]
and to comprehensive references given there. Note that currently, the models of simplest vibrational
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.09.020

ing author.

ess: s.verichev@infonet.nnov.ru (S.N. Verichev).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.09.020
mailto:s.verichev@infonet.nnov.ru


ARTICLE IN PRESS

m

r

k1

r1m0

m0 r1

�0

k, c

�

�

Fig. 1. The model under consideration.
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mechanisms became teaching material on vibrotechnics as well as on the theory of the mechanisms and
machines [12]. This fact provides extra interest to study such systems for the detailed knowledge of their
dynamical properties.

The major studies of the dynamical chaos in nonlinear systems with a small number of degrees of freedom
started about three and one-half decades ago. Generally, these studies were done by the mathematicians of the
Gorky school of A.A. Andronov, namely by L.P. Shilnikov, Yu.I. Neimark, V.S. Afraimovich, V.V. Bykov
et al. [13]. With breakthroughs in bifurcation theory and advances in computer technologies (most of the
studies are related to the numerical modeling), the number of publications on the chaotic dynamics of
‘‘simple’’ systems increased enormously. Numerous publications on chaotic dynamics are related to
radiophysical systems, superconductive and laser electronics systems, radio-technical systems, etc., but not
to the mechanical systems. This paper aims to fill this gap. Although chaotic regimes are not desirable
operational regimes of mechanical systems, the necessity to study these regimes is obvious. First, since the
simplest vibrational mechanisms have already become teaching material, then information about their
dynamics must be thorough and extensive. Second, the breadth and depth of the information is necessary to
avoid the unpleasant surprises in the engineering practice when complicated mechanical systems are being
designed.

Here, the dynamics of the simplest vibrational mechanism shown in Fig. 1 is considered. Having developed
a technique to study such a simple model and having understood its dynamics, one could proceed with more
complicated and realistic models. On the basis of transformation techniques for the systems with a cylindrical
phase space developed to study dynamics of systems with superconductive junctions [14], the averaging
technique is used to show the existence of classical Lorenz and Feigenbaum chaotic attractors in such a simple
system and interpret the results.

2. The model

Fig. 1 shows a simple vibrational mechanism: the mass m, which lays on the conveyor band moving by
rollers of the radius r, is attached to the immovable wall by the spring–dashpot system with the stiffness k and
the viscosity c; the crankshaft of the length r1 is placed in perpendicular to the motor shaft and attached to the
mass by the spring with the stiffness k1. The crankshaft length is small enough so that the deformation of
the elastic coupling might be considered in the horizontal direction only. This model has been taken from the
book [10] with slight changes. Firstly, a lubricated conveyer band is considered, so that the horizontal
component of the contact force between the mass and the band is proportional to the relative velocity (the
friction between the mass and the band has been changed from the dry one into the viscous one with the
viscosity n). Secondly, the driving roller has imbalance m0 placed at the angle j0 with respect to the crankshaft
in the direction of the shaft rotation. These changes have been done to simplify the study. Note that system
under consideration and its variations represent simple models of vibrational mechanisms that are used to
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enter handbooks on vibrations. Because of that, a necessity to provide a full knowledge on dynamical
properties of such systems motivates this study.

The following forces act on the mass: F1 ¼ �kx is the elastic force acting from the left spring, where x is the
displacement of the mass; F 2 ¼ k1ðr1 sin j� xÞ is the elastic force acting from the right spring; F3 ¼ nðr _j� xÞ

is the friction force between the mass and the conveyor band; F4 ¼ �c _x is the resistance force of the damper.
The following moments act on the rotor: M1 ¼gMdð _jÞ is the motor torque including the moment of the rotor
motion resistance forces (load torque); M2 ¼ �k1r1ðr1 sin j� xÞ cos j is the moment of the elastic force of
the right spring; M3 ¼ �nrðr _j� xÞ is the moment of friction force acting from the conveyor band; M4 ¼

�M0 cosðjþ j0Þ ¼ �m0g� cosðjþ j0Þ is the moment of the gravity force of the imbalance, where e is the
eccentricity. The governing equations have the form:

€xþ o2
0x ¼

k1r1

m
sin jþ

nr

m
_j�

nþ c

m
_x,

I €j ¼gMdð _jÞ � nrðr _j� _xÞ þ k1r1ðx� r1 sin jÞ cos j�M0 cosðjþ j0Þ. ð1Þ

The system (1) is defined in the cylindrical phase space Gðj; _j;x; _xÞ ¼ S1 � R3 and represents an example of
a system of the ‘‘rotator-oscillator’’ type [15,16]. Here, o2

0 ¼ ðk þ k1Þ=m, I is the normalized moment of inertia
of the rotor, M0 ¼ m0g�.

It is assumed that variables, parameters, and time in the equations of system (1) are reduced to the
dimensionless form, and I�1 ¼ m51, where m is the small parameter; ðnþ cÞ=m ¼ 2mh (dissipation in the
‘‘oscillatory’’ part of the system is small enough), k1r1=m ¼ 2mlo0 and k1r1 ¼ 2mbo0. The condition of
smallness is not applied for other combinations of the parameters.

For the mentioned parameters, the dynamical system (1) is quasi-linear so that asymptotic methods, in
particular, the averaging technique, can be applied. This system is studied here just in a zone of main
resonance (Offi o0, where O is a frequency of rotations of a motor called also a motor speed).

3. Transformation of the dynamical system to the standard form

The technique to transform the equations in system (1) to the system with a fast spinning phase [17], which
is used here, is quite a nonstandard technique [14,16]. Due to this reason, this technique is discussed here in
detail. This algorithm can be extended for any quasi-linear system with a cylindrical phase space.

For the chosen parameters domain, the equation for the phase has the form

_j ¼ o0 þ mFðy; Z;j; xÞ, (2)

here, Fðy; Z;j; xÞ is some function, which will be defined later during the transformation of the rotator’s
equation, and y,Z,x is the set of new ‘‘slow’’ variables. Taking into account Eq. (2) and applying the change of
variables of the form

x ¼
nr

mo0
þ y sin jþ Z cos j; _x ¼ ðy cos j� Z sin jÞo0

to the first equation of system (1), the following equations for the new variables y and Z are obtained:

_y ¼ mF1ðy; Z;j; xÞ,

_Z ¼ mF2ðy; Z;j; xÞ,

F 1 ¼ ZFþ
1

o0
X ð:Þ cos j,

F 2 ¼ �yF�
1

o0
X ð:Þ sin j,

X ð:Þ ¼ 2lo0 sin jþ
nr

m
F� 2ho0ðy cos j� Z sin jÞ. ð3Þ

It is known that torque of an asynchronous motor is almost a linear function of the formgMdð _jÞ ¼Md � d _j
with Md, the constant component (for an AC motor, this parameter is defined by the current in an exciting
circuit), and d, the coefficient that defines a value of the moment of the rotor motion resistance forces [12].
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Having used this expression for the motor torque together with Eqs. (3), the equation for the rotator (the
second equation in system (1) is transformed). Substituting Eq. (2) into the second equation of the system (1),
one obtains

qF
qy

mF1 þ
qF
qZ

mF 2 þ
qF
qj
ðo0 þ mFÞ þ _x

¼Md � ðdþ nr2Þo0 � dmF� nr2mFþ nro0ðy cos j� Z sin jÞ

þ 2mbo0ðy sin jþ Z cos j� r1 sin jÞ cos j�M0 cosðjþ j0Þ.

It is assumed that Md � ðdþ nr2Þo0 ¼ mD (the zone of main resonance). Having separated terms of the
different order with respect to the small parameter m, one obtains the equation for the variable x and the
equation for the function Fðy; Z;j; xÞ that has the form:

qF
qj

o0 ¼ nro0ðy cos j� Z sin jÞ �M0 cosðjþ j0Þ.

In particular, this equation has the solution of the form:

Ô ¼ nrðy sin jþ Z cos jÞ �
M0 sinðjþ j0Þ

o0
þ x.

As a result, the system of equations of the standard form that is equivalent to system (1) is obtained:

_y ¼ mF1ðy; Z;j; xÞ,

_Z ¼ mF2ðy; Z;j; xÞ,
_x ¼ mF3ðy; Z;j; xÞ,

_j ¼ o0 þ mFðy; Z;j; xÞ. ð4Þ

Here,

F3 ¼ �
qF
qy

F1 þ
qF
qZ

F 2 þ
qF
qj

F
� �

� ðdþ nr2ÞFþ 2bo0ðy sin jþ Z cos j� r1 sin jÞ cos j.
4. Averaged system

Averaging system (4) by the fast phase j, one obtains

_x ¼ mð�b1xþ b2yþ b3Zþ DÞ,
_y ¼ mð�b4yþ b5Zþ Zxþ b6Þ,

_Z ¼ mð�b4Z� b5y� yxþ b7Þ,

_j ¼ o0 þ mx. ð5Þ

Here,

b1 ¼ nr2 þ d; b2 ¼ �
M0nr sin j0

2o0
; b3 ¼ bo0 þ

M0nr cos j0

2o0
; b4 ¼ h; b5 ¼

ðnrÞ2

2mo0
,

b6 ¼ �
M0nr sin j0

2mo2
0

and b7 ¼
M0nr cos j0

2mo2
0

� l.

Introducing new variables and time

x ¼
xþ b5

b4
; y ¼

b3Zþ b2y
b1b4

� L; z ¼
b3y� b2Z

b1b4
þ R; mb4t ¼ tn,



ARTICLE IN PRESS
N.N. Verichev et al. / Journal of Sound and Vibration 310 (2008) 755–767 759
one reduces Eqs. (5) to the system of the form

_x ¼ � sðx� yÞ þ r,

_y ¼ � yþ Rx� xz,

_z ¼ � zþ xyþ Lx ð6Þ

with

s ¼
b1

b4
¼

nr2 þ d
h

; r ¼
1

b2
4

Dþ
1

b4
ðb1b4b5 þ b3b7 þ b2b6Þ

� �
,

R ¼
b2b7 � b3b6

b1b
2
4

¼
2Al

ðdþ nr2Þh2
sin j0; L ¼

b3b7 þ b2b6

b1b
2
4

¼
lðA2 � b2o2

0Þ

bo0ðdþ nr2Þh2
,

A ¼
M0qn
2o0

.

Note that after transformations, the averaged system (6) is defined already in the phase space G�ðx; y; zÞ ¼
R3 but not in the cylindrical phase space, as it normally happens after the introduction of the ‘‘amplitude-
phase’’ variables. This significantly simplifies the further study.

Definition 1. The function

O ¼ lim
T!1

1

T

Z T

0

_jðt; t0Þdt

defined under the parameter space of system (1), and the space of its initial conditions is called the rotation
characteristic of rotor (torque–speed curve).

Using the definition and Eq. (2), it is obtained that O ¼ o0 þ mx�ðt; t0Þ, where x
�
ðt; t0Þ is an average value of

the variable x(t) that corresponds to the limit set of trajectories of system (5) realized for given initial
conditions (during the evaluation of a limit, all solutions that correspond to the transient processes will
provide the zero average value). Let us review the correspondence of the limit sets of averaged and initial
systems [18]: equilibriums of system (5) and system (6) correspond to the limit cycles of system (1), limit cycles
of the averaged system correspond to the invariant tori of the system (1) (to the quasi-periodic motions of
system (1) if a corresponding torus is ergodic). Generally, if G is a limit set of an averaged system with nonzero
characteristic measures, lying far enough from the imaginary axis, then it corresponds to the limit set G�S1 of
the system (1) together with the character of the stability.

Our interest is focused on the qualitatively different torque curves as functions of the constant component
of the rotor torque for fixed values of all other system parameters. By definition, to represent a full set of
qualitatively different states of the torque curve, a full study of the averaged system (6) is to be carried out, i.e.,
the classical problem of the decomposition of the phase space into the domains corresponding to the
qualitatively different trajectories structures in the phase space is to be solved.

After the application of the new variables and parameters (5) to the system (6), it is obtained that Md�D�r,
xðtÞ�xðtÞ (linear dependence). Thus, the curve r ¼ r x�ðt; t0Þ

� �
has the same qualitative features as a function

inversed to the torque curve in a resonance zone. This curve is of further interest as a ‘‘rotation characteristic’’.

5. Properties of the averaged system
(1)
 System (6) is a dissipative system. This property can be proved with the help of the following quadratic
form: V ¼ 1

2
ðx2 þ ðyþ LÞ2 þ ðz� s� RÞ2Þ, the derivative of which, taken in accordance to system (6), has

the form _V ¼ �sx2 � ðr� sLÞx� y2 � Ly� z2 þ ðsþ RÞz that is negative outside some sphere VpL2. It
means that all limit sets of the trajectories of system (6) in the phase space G�ðx; y; zÞ ¼ R3 are limited by a
sphere of dissipation.
(2)
 Depending on the parameters, system (6) has up to three equilibriums with coordinates

x0 ¼ o; y0 ¼ ðRo� Lo2Þ=ð1þ o2Þ; z0 ¼ ðRo2 þ LoÞ=ð1þ o2Þ,
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where o1;2;3 are the solutions of the equation

f ¼ oþ ðLo2 � RoÞ=ð1þ o2Þ; f ¼ r=s. (7)

In this case, the parameter o has actually the sense of the mistuning of a frequency of the rotator’s
periodical rotations in system (1) and the sense of the oscillator eigenfrequency.
(3)
 If system (6) has one equilibrium Oðx0; y0; z0Þ, then this equilibrium is globally asymptotically stable. This
can be proved with the help of the Lyapunov function V ¼ 1

2ðmx2
1 þ y2

1 þ z21Þ, where
x1 ¼ x� x0; y1 ¼ y� y0; z1 ¼ z� z0. The derivative of the Lyapunov function, taken in accordance to
system (6), has the form _V ¼ �ða1x1 þ y1Þ

2
� ða2x1 þ z1Þ

2p0; 8ðx1; y1; z1Þ;where a1 ¼ ðsmþ R� z0Þ=2,
a2 ¼ �ðy0 þ LÞ=2, and m is a positive root of the equation s2m2 þ 2sðR� z0 � 2Þmþ ðR� z0Þþ

ðy0 þ LÞ2 ¼ 0. It may be proven that conditions of existence of a positive root and conditions of unicity
of the equilibrium in system (6) (conditions that the function f is one–one function) are the same.
(4)
 Properties of the equilibriums are as follows. For an arbitrary equilibrium Oðx0; y0; z0Þ of system (6), the
characteristic equation has the form p3 þ a0p2 þ a1pþ a2 ¼ 0, where a0 ¼ sþ 2; a1 ¼ 2sþ 1þ o2þ

sðLo� RÞ=ð1þ o2Þ, a2 ¼ sð1þ o2Þð1þ ðRo2 þ 2Lo� RÞ=ð1þ o2Þ
2
Þ.

For o ¼ 0ðr ¼ 0Þ, the criteria of the stability of the equilibrium Oð0; 0; 0Þ is the inequality Ro1. For oa0,
the Gurvitz conditions are equivalent to the following inequalities:

a140 : f4ðoÞf 1; a240 : f4ðoÞf 2; a0a1 � a240 : f4ðoÞf 3; o40ðoo0Þ

with f 1 ¼ �oðsþ 1þ o2Þ=s; f 2 ¼ �oðR� 1þ o2Þ=2, f 3 ¼ �oðs
2 þ 4s� sRþ 2þ 2o2Þ=s2. Thus, the

criterion of the stability of any equilibrium of the system is a location of a point of the curve (7),
corresponding to this equilibrium, above (below) all of the curves f 1;2;3 for o40ðoo0Þ. Equations f ¼

f 1;2;3; f ¼ r=s define, in the parameter space of system (6), bifurcation surfaces corresponding to change
of a local structure of its equilibriums. The auxiliary functions have two simple properties.
Function f2 crosses function f in the positions of extremum and at the origin.
All curves cross each other in three points o1;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3s� sRþ 2Þ=ðs� 2Þ

p
and at the origin. The

properties of equilibriums will be discussed in more detail during the consideration of the torque curves.

(5)
 Typical types of chaotic attractors in the averaged system.
The Lorenz attractor: For r ¼ L ¼ 0, system (6) represents a well-known Lorenz system [19]. This classical
system, for some values of the parameters s ¼ s�; R ¼ R�4Rc; Rc ¼ ðs2 þ 4sÞ=ðs� 2Þ has a unique
attracting limit set in the phase space—strange attractor (Lorenz attractor). Note that according to the
property 4, the expression for Rc is defined by the condition of the coincidence of the zeroes of functions f and
f3. This condition corresponds to the loss of the stability of the equilibriums O2;3ð�

ffiffiffiffiffiffiffiffiffiffiffiffi
R� 1
p

;�
ffiffiffiffiffiffiffiffiffiffiffiffi
R� 1
p

;R� 1Þ
since the saddle limit cycles that appear earlier (by the parameter R) from the separatrix loop of the
saddle O1ð0; 0; 0Þ get stuck in them. In fact, a strange attractor already exists for R4R�oRc, where R� is the
value of the parameter R that corresponds to the saddle separatrix loop. In this case, a strange attractor
and stable equilibriums co-exist having disjointed attraction domains. That is, for R4R�oRc, depending on
the initial conditions, the limit motions of the system will be either equilibriums or those of the strange
attractor [20].

‘‘Deformation’’ and degeneration of the Lorenz attractor for nonzero parameters r and L have been studied
numerically. For L ¼ 0 and increasing r from zero, the attractor loses its symmetry because the affix remains
mostly in the vicinity of the right saddle focus (for the projection onto the plane (x,z)). Further, this
equilibrium becomes stable after the birth of a saddle limit cycle. In this case, depending on the initial
conditions, an equilibrium or a chaotic attractor may be realized. With further increase of the parameter r, the
saddle cycle ‘‘gets stuck’’ in the separatrix loop of a saddle and the equilibrium becomes globally stable. Since
system (6) is invariant with respect to the change of the variables ðx; y; zÞ7!ð�x;�y; zÞ; r7! � r, the same
scenario of the degeneration of the Lorenz dynamical chaos occurs with the change of the parameter r
towards the negative values. The only difference is that the right equilibrium becomes globally stable. This
scenario also takes place for the nonzero L, at least for jLjo3. Asymmetrical Lorenz attractors are depicted in
Figs. 2a and c. Note that for rL40 and small jLj, there exists r, for which the attractor has a ‘‘visual’’
symmetry (see Fig. 2b).
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Fig. 2. The Lorenz attractor: (a) s ¼ 9.7, R ¼ 27, L ¼ �1, r ¼ 28.53; (b) s ¼ 9.7, R ¼ 27, L ¼ �1, r ¼ 3.5; (c) s ¼ 9.7, R ¼ 27, L ¼ �1,
r ¼ 31.67.
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Fig. 3. (a) The Feigenbaum attractor: s ¼ 9.7, R ¼ 27, L ¼ �7, r ¼ 36.47; (b) the alternation: s ¼ 9.7, R ¼ 27, L ¼ �7, r ¼ 36.27.
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The Feigenbaum attractor and the alternation: This type of the chaotic attractors has been found to exist for
rL40 and for high enough absolute values of the parameter L. For the numerical calculation, jLjX7 has been
used. The Feigenbaum attractor [21] is depicted in Fig. 3a. With the increase of the parameter r, the left
equilibrium of system (6) losses its stability with the birth of a stable limit cycle. Further, this cycle experiences
a series of bifurcations of doubling of the period. In some interval of values of r, the chaotic attractor has the
attraction domain isolated from the attraction domains of other limit sets. With the further increase of r, the
attraction domain of the attractor intersects with the attraction domain of another chaotic limit set (it has not
been studied which one exactly, probably this limit set is an ‘‘inheritance’’ of the asymmetric Lorenz attractor).
As a result, a typical alternation [12] occurs (see Fig. 3b). To not overload the figure, just a couple of ejections
of the trajectory from the attraction domain of the Feigenbaum attractor have been shown. Since system (6) is
invariant with respect to the transformation ðx; y; zÞ7!ð�x;�y; zÞ;r7! � r; L 7! � L, the same scenario occurs
in the right half-plane (x,z) for the positive L and a decrease of r.

For negative R and arbitrary values of other parameters, chaotic attractors do not exist in system (6).

6. Direct study of the dynamical chaos in the initial system

The statements about existence of the chaotic attractors of a certain type in the initial system (1) have been
made on the basis of the existence of the corresponding attractors in the averaged system (6). To confirm that,
the Poincare mapping has been plotted using the secant hyperplane j ¼ const at the period 2p; i.e.,
ðy; Z; xÞj¼j0 ! ðȳ; Z̄; x̄Þj¼j0þ2p. For the rotational motions, this secant is global. For convenience, the mapping
has been done for the following system that is equivalent to system (1)

_y ¼ m Zxþ 2l sin jþ
nr

mo0
x� 2hðy cos j� Z sin jÞ

� �
cos j

� �
,

_Z ¼ m �yx� 2l sin jþ
nr

mo0
x� 2hðy cos j� Z sin jÞ

� �
sin j

� �
,

_x ¼Md � ðdþ nr2Þo0 � mðdþ nr2Þxþ nro0ðy cos j� Z sin jÞ

þ k1r1
nr

mo0
þ y sin jþ Z cos j� r1 sin j

� �
cos j�M0 cosðjþ j0Þ,

_j ¼ o0 þ mx. ð8Þ

This system is obtained from system (1) after the following transformation:

x ¼
nr

mo0
þ y sin jþ Z cos j; _x ¼ ðy cos j� Z sin jÞo0; _j ¼ o0 þ mx

with m ¼ I�1.
Parameters of system (8) have been chosen such that the corresponding parameters of the averaged system

would have values close to those that have been used to plot Figs. 2 and 3. Fig. 4a shows the asymmetrical
Lorenz attractor in the Poincare domain. The slight difference between this attractor and that shown in Fig. 2a
is concerned with the change of the variables done to reduce system (5) to system (6). This change of variables
provides parallel displacement and turn of system of coordinates. Thus, attractors depicted in Figs. 4a and 3a
represent projections made at different angles. To make them identical, one had to perform extra change of the
variables at the Poincare plane. However this is not necessary as qualitative forms of attractors are pretty
much recognizable. Relationship between parameters of original system (1) and averaged system has the form

s ¼ ðdþ nr2Þ=h,

R ¼ ðlM0nr sinðj0Þ=ðo0ðdþ nr2Þh2
ÞÞ,

L ¼ 2ml
M0nr

2o0

� �2

�
k1r

2m

� �2
 !,

ðk1r1ðdþ nr2Þh2
Þ

 !
.

Thus, values of the parameters of system (1): nr=m ¼ 1; nr2 ¼ 0:5; nr ¼ 2:17; k1r1 ¼ 0:14; m ¼ 0:1;o0 ¼

1:064; d ¼ 0:49; l ¼ 0:2; h ¼ 0:1;Md ¼ 0:9666;M0 ¼ 0:671; r1 ¼ 0:1; and j0 ¼ p=2 correspond to the following
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values of the averaged system: s ¼ 9:9;R ¼ 27:646; and L ¼ �0:629. Fig. 4b shows the structure of the chaotic
rotational motions at the involute of the phase cylinder.

Fig. 5a shows the Feigenbaum attractor based on the doublings of the invariant torus. The values of the
parameters of system (1): nr=m ¼ 1; nr2 ¼ 0:5; nr ¼ 2:17; k1r1 ¼ 0:1715; m ¼ 0:1;o0 ¼ 1:064; d ¼ 0:49; l ¼
0:2; h ¼ 0:1;Md ¼ 0:7466;M0 ¼ 0:671; r1 ¼ 0:1; and j0 ¼ p=2 correspond to the following values of the
averaged system: s ¼ 9:9;R ¼ 27:646; and L ¼ �6:293. Fig. 5b shows the corresponding structure of the
chaotic rotational motions at the involute of the phase cylinder.

7. Qualitative forms of the torque curve in the resonance zone
(1)
 Consider Rp0. In this case, the system dynamics is quite simple: in system (6) there exist only equilibriums
(rotational limit cycles in system (1)). Equilibriums experience just one type of bifurcation: confluence of
the equilibriums and formation of a saddle-node with its further disappearance. All torque curves have one
or two hysteretic loops. The jump in the frequency of the rotor rotations happens at the extremums of the
torque curve. Fig. 6 shows torque curve with two loops.
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The torque curve is shown in Figs. 6–8 by the bold solid line. Its dashed parts correspond to the unstable
equilibriums of the type saddle or saddle-focus. In contrast, the solid parts correspond to the stable
equilibriums of system (6) (stable limit cycles of system (1)). Thin lines correspond to the auxiliary
functions that define the stability and the type [22] of equilibriums. One can say that a so-called doubled
Sommerfeld effect occurs in the system [1,2,5].
With the decrease of jRj and with the increase of jLj, the left loop disappears but not the right one
(see Fig. 7). As a result, a classical (one-loop) Sommerfeld effect [5] occurs. Since system (6) is invariant
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with respect to the transformation ðx; y; zÞ7!ð�x;�y; zÞ; r7! � r; L 7! � L, for positive and increasing L,
the right loop disappears and the left one remains.
(2)
 Consider R40. In this case, the system dynamics is more diverse during the change of the system
parameters. Accordingly, the more diverse is the set of the qualitative forms of the torque curves. Consider
only the cases of existence of the chaotic attractors in system (6). Suppose that R ¼ Rc � o, where o40 is
small enough (see Fig. 8a). In this case, in some interval of the values of the parameter r/s, there exist two
stable equilibriums and the Lorenz attractor. In the figures, this domain is shaded. Thus, depending on the
initial conditions, either one of the two equilibriums of system (6) (periodical motions of system (1)) as well
as the strange attractor corresponding to the chaotic behavior of the rotor instantaneous frequency may be
realized. Outside the zone, for any initial conditions, either pre-resonance or post-resonance regimes of the
rotor periodic motions occur (depending on the value of the motor torque).
Fig. 8b shows the torque curve for R4Rc. In this case, for any value of the parameter r/s from the shaded
domain, there exists a certain chaotic attractor in the phase space of system (6) that is the unique attracting
limit set. In other words, in the aforementioned interval, there exists an infinite number of chaotic attractors,
every one of which has individual spatio-temporal properties. For each point, bifurcations of the homoclinic
trajectories and of the corresponding saddle periodic motions occur. Temporal average value hxðt; t0Þit for
each attractor is different. Moreover, due to the strong dependence of the trajectories on the initial conditions
and due to the finiteness of the real averaging interval, this value will strongly depend on the initial time t0.

As far as a torque curve in the shaded domain is concerned, one can conclude the following:
(a)
 The torque curve in the shaded domain is irreproducible—during the quasi-stationary increase of the
parameter r/s (constant part of the motor torque), one obtains one curve (branch), but for an opposite
change (arbitrarily small), one obtains a completely different curve.
(b)
 The torque curve in the shaded domain has an infinite number of mixed branches that start at the
frequency jump points corresponding to the ends of solid bold lines. Due to this reason, torque curve in
this zone is not presented.
Such behavior of the torque curve is a so-called effect of the scattering of the torque curve of the rotator. In
particular, such effect is known to take place for the synchronization of the superconductive junction by a
microwave field [23].
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8. Conclusions

Let us explain why the system dynamics changes crucially after the introduction of the rotor imbalance. If
the imbalance is absent ðM0 ¼ 0; R ¼ 0Þ, the system dynamics is simple: there exist periodic motions only, i.e.,
classical Sommerfeld effect occurs. In this case, the governing equation for the asynchronous motor is, in fact,
the first-order equation (with respect to the variable _j). Thus, an asynchronous motor does not represent a
‘‘full’’ rotator, which normally represents a dynamical system, with one degree-of-freedom, that is defined in
the cylindrical phase space and has at least one cycle of the second kind. Thus, in the absence of couplings,
there is a third-order system (generating case). In the case of the existence of couplings, the corresponding
averaged system inherits all properties of the second-order system despite that it is of the third order. Because
of this reason, there is no dynamical chaos in the analogous system with the balanced rotor. Of course,
existence of the second-order system in a generating case is a necessary condition for existence of the
dynamical chaos in vibrational mechanisms. The structure of couplings between rotator and oscillator is also
important. These reasonings, of course, are valid for the case, when the normalized moment of inertia is high
enough in the corresponding system of equations.

Also note that parameter R ¼ ½2Al=ðdþ nr2Þh2
� sin j0; where A ¼M0nr=2o0 strongly depends on the point

of the imbalance placement. If Ro0 and its absolute value is high enough (see Fig. 6), then the area in between
the loops may be quite sharp (for the corresponding choice of the active system parameters). Thus, by
choosing the magnitude and the point of the imbalance placement, one could provide a significant
stabilization of the rotor motions whereby external influences, including random ones, will not noticeably
affect the operational regime of a mechanism.
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